
llTGDC
NEIJ5

Volume ? Issue 10 April 1986

(]FF~C~f\l J(]UANf\l (]F THE

(}tat~anal TREJ-80

R (jE!n~E! Users

(jraup.

- 2 -

INFORMATION OB TBB GROUP

Membership of the group is by subscription to the Newsletter,
which is published monthly. Membership details are obtainable
from the Gro~p Secretary. Membership of the group is open to
anyone with an interest in computers but special emphasis is
placed on equipment in the TANDY range.

Details of the Group accounts, and the constitution of the
Group, are available from the Secretary.

Meabers requiring assistance with problems related to the TRS-80
/ Video Genie may call the Secretary. An attempt will be made
to put them in touch with a member who can help with the
problem.

Workshops are arranged from time to time in various parts of the
country.

Sub-groups exist in many areas.
Newsletter from time to time.

A list is provided in the

The Group •aintains two software
which are free to meabers. Library
Secretary.

libraries (Models I and II)
lists are available from the

For confidentiality reasons, the membership list is not
generally available, but members may ask the secretary for a
list of members in their area, and mailshots to all members may
be arranged.

Back numbers of the Newsletter are available from the Secretary.

Please send all contributions for the Newsletter to the Editor,
on disk if at all possible (5.25•, NEWDOS-80 v2 or Montezuma
Micro CP/M prefered, any combination of density, sides or
tracks, but please say what it is). Your disk will be returned.

Newsletter Editor
Geof Smith
17 Homefield Rd.,
Bushey,
Herts WD2 JAP
01-950-6345

Secretary & Newsletter Publisher
Brian Pain
24 Oxford Street,
Stony Stratford,
Bucks. MKll lJU
0908-564271

- 3 -

Information on the group ••••••••••••••••••••••••••• 2

Editorial •• 4

Membe rs Letters •••••••••••••••••••••• , ••••••••••••• 6

Problem Section •..••••••••.••.•••••••.••••••••••••• 7

Oggy Oggy Oggy ••••••••••.•••••.••••••.•••••••••••.• 8

Cumana Disk Drives •••••••••••.•••••••••••••••••••.• 9

A Taste of Pascal ••••••••••••••••••••••••••••••••• 10

Execute from a Menu •••••••••••• • •••••••••••••••••• 13

Put 5.25 inches on Arnold •••.•••••••.••••••••••••• 16

ltermi t - Part l •••••••••••••.•••••••.••••••••••••• 17

Space savings in FIELDS - revisited •.•••••••••• • •. 23

l x 40T SSDD
2 x SOT DSDD

Blandford Computers
STD (0258) 53737

While stocks last:
Tandy Model 4

£400 2 x 40T SSDD
£600 4 x BOT DSDD

Models 100 and 1000 - Ring for Special LOW price
Model 3000 Multi user now working
Tandon cut price range of PCX & PCA machines
Amstr a d cut price range of machines

Hard drives for the Model 4
Floppy drives - 5~ 80/40T DSDD switchable

£450
£800

Printers: Tandy DWP 210 - Quen Daisy wheel - Citizen 2100
all at £130.44

Disks: 5~ at £6.97 / 10 black 40T DSDD
5\ at £12.18 / 10 coloured SOT DSDD

Printer ribbons - paper - phones
Part Exchange - ask for our secondhand list

Blandford meeting on Sunday, September 7th, FREE lunch.
All prices are exclusive of VAT.

- 4 -

EDITORIAL

Welcome to a different set o f biases and opinions on computing
in general and Tandy in particular. At present I'm not too
certain whether or not I'm presiding over a wake or a re-birth.
This week I've had a phone call from Brian saying that he's
already had a response from interested Amstrad owners but I've
also had a phone call from one of the silent majority saying he
was not renewing his membership, had gone to CP/M and was
planning to go MSDOS and could we sell his Model 1. What is
clear is that NATGUG's collective experience in Level II BASIC,
and TRS-80 specific operating systems and hardware is no longer
in great demand. Those of us left are in it for the fellowship
as much as for guidance in matters computational. If the
computer aspect of the group is to survive then we must evolve
or we will be ousted from our ecological niche.

The last Swindon weekend seemed to be showing a great
upsurge in the use of and interest in CP/M. This probably
offers temporary sanctuary especially if the recruitment of PCW
8256/8512 members is successful. We are having Dave Holman's
series on CP/M reprinted as a booklet which may be of use to
those just starting on the CP/M trail. Has anyone any
suggestions for expansion or addition to the top i cs covered in
his articles. It would also be helpful to receive some more
reviews and comparisons of the multitude of CPM software, both
commercial and public domain. Would anyone care to compare and
contrast the merits or otherwise of Wordstar, Spellbinder or
Perfect-Writer for instance.

Another possible bridge for crossing the machine divide is
with the use of portable languages. In this context C and Turbo
Pascal spring to mind. Leon has been extolling the virtues of C
for a number of years and its portablity has improved of late.
However, I still find that its source code is pretty cryptic fer
my tastes and the lack of an efficient run-time debugging syst e m
hds always held up my use of the language for anything ether
than t rivial utilities. Perhaps someone out there is using one
of the more modern implementations with proper source level
debugg i ng such as Living-C or an interpreted version such as
Instant-c. A review or even just a quick note would be very
useful. These latter two are 16 bit C's, for us more 'umble
mo rtals MIX-Cat $39.95 would seem excellent value.

Tu r bo Pasc al by Borland International gets my vote as one
of the best computing environments that I've come across. The
speed o f the compiler almost offset's the time penalty of
compilation, and the close interaction of the error trapping
wi th the editor makes debugging relatively easy. This coupled
wi th the fact that the compiler is available for CP / M-80 & 86,
PCDOS & MSDOS, the Mac and the Amiga makes for almost un i versal
por t abil i ty of c ode amongst micros. We even port the c o de t o
our DEC- 2 0 mainframe with only minor changes to the I/O When
you consi der that you get all of this for £49.00, i is no
wonder that it has become the de facto standard. In th s issue

- 5 -

0 1. L:1e newsl e tter we have a very brief introd uction t o Pascal
and o ur first small Turbo Pascal program. I hope that this is
the first of many and if any of you have any small utilities or
even subroutines written in either C or Pascal I for one would
very much like to see (!) them. Whilst on the subject of Turbo,
I note that Borland has just released Turbo Prolog for MSDOS
systems, this appears to be an incremental compiler which really
does give you the best of both interpreted and compiled
situa tions - do we have any members interested in AI? On the
CP/M front Borland appear to be on the point of releasing Turbo
Modula-2. This language is Niklaus Worths' successor to Pascal
and has actually been designed to be used rather than taught as
was the case with Pascal. The early indications are the
language is very good indeed and may succeed C as a language for
system implementation as well as the more usual computational
usages.

The area of computer communication is also a field which
offers great opportunity for cross system interest. I have
started in this issue the first part of three or four articles
on Kermit which is basically a computer to computer
communication protocol. I would very much like to see some
information on one of the other popular protocols such as
MODEM-7 so that we can compare the strengths and weaknesses of
the available systems and sort out the horses for courses.
Great developments also appear to be taking place in both
hardware and software in the form of new super-whizzo do
everything modems and terminal programs (do we actually need
SYSOPS now I wonder ?). Would anyone like to tell those
dithering on the edge about the pros and cons of the new
goodies.

I make no aplogies for a rather long first editorial.
There was plenty of space to fill and it has given me the
opportunity to make some suggestions as to the direction I think
the magazine should take. The rest is up to YOU. More ideas in
the form of letters will be most welcome, but contributions are
essential. The newsletter is being printed as a continuous file
on a Daisy wheel printer rather than being a paste-up. I really
do not want to have to re-type your contributions and so would
greatly appreciate receiving them on a disk. I'm using
CPM-Scripsit to prepare the Newsletter so any of the Montezuma
or Genie CPM formats would be most convenient. However I can
read virtually any 5.25 CP/M Format and also PC-DOS. If you are
running under a Tandy operating system, then NEWDOS-80 v2 would
be most suitable but again I can read any at a pinch. Your
disk's will be returned to you.

look forward to hearing from ALL of you - Ed.

PS. Thought for the month
- On a clear disk you can seek forever

- 6 -

fU~ .. BBRS LETTERS

FUTURE DIRECTION OF NATGUG/QUANTA

Dear Ed.,

As a longtime user of TRS-I AND III, who has also a QL a
Commodore 64 and an Amstrad 8256 within the group, I also wonder
how long NATGUG can survive. As one who has had only a few hours
on the Ams~rad, I was amazed by the quality of the Locoscript
(after s ·cripsit) and the ability to refer to a list of Files
whilst retaining the letter in memory. Also the ease of printing
in different fonts which my Scripsit is not patched to do.

In short we should jump on the Amstrad Bandwagon,
especially in view of the proposed launch of their IBM
compatible for around £500. Although I note that DOTWRITER is
now again available in the U.~. (re David Nashford March
Issue), l am not sure about its compatibility with my Tandy
L~neprinter VI or my Seikosha GPlOOA Mark II, and in any case
cheap programs runnin9 under CP/M are in plentiful supply. The
Amstrad 8512 is the twin disc version with CP/M Vl.4 and
LocoScript V 1.2 and appears to be better value - at the moment.
A9ain to rival Dotwriter there are the POLY/PROGRAMS which can
print up to 25 distinctive Typefaces - are there programs to do
this with my Model-III. ·

Incidently our Computers are used primarily for Business
purposes, using Visicalc for designing and operating accounting
systems , and Seripsit for letters etc.

We also have a 3M Copier for which we require something
like Dotwrier to design Posters and Handbills.

JOHN JEFFERY TEL (DERBY) 0332-881239

- 7 -

PROBLBR PAGB

Alhough most of this problem seems to be directed at the QL,
there may be someone with knowledge of obsolete technology - I
mean just where do you buy quill pens these days ? - Ed .

SEIKOSA GPlOO MARK II PRINTER

Dear Ed.,
As a recent owner of a QL (£200 including Ferguson Monitor

- Model No 3MM02GS) I have had some difficulty in interfacing it
with the above Printer. Incidently the price originally quoted
for the interface was £34.00, but upon checking Sinclair QL
World, the Price quoted at MIRACLE SYSTEMS was £19.50. The shop
involved (Gordon Harewood Alfreton (0773)832078 agreed to
charge me £19.50 after copying the Advert.

However upon connecting the printer and programming it as a
Centronics FX80, it proceeded to print in a very jerky fashion
and also left a space between each line. I would like to know
the precise instructions to be given when installng PRINTER DAT
in QUILL .

Also can my TRS80 Model III, 40 track Disc drives be
interfaced with the Q.L., and if so how do I address them and
what interfaces do I require.

JOHN JEFFERY DERBY (0332) 881239 SCRIPSIT/NEWDOS

- 8 -

Ever t ho uc h t about how many paradoxes there are in our
everyday life ? As one of the mo re vociferous attackers of the
QL - and I must admit that this was due to downright jealousy
after seeing some fantastic screens (particularly when compared
to a Model 1) - I was quite upset to read of its virtual demise
following the sellout to Amstrad. Paradox number 1.

In the many and varied reports that assailed us during the
days that f o llowed, most of the so-called experts agreed that
the failure of the QL to capture the market had absolutely
nothing to do wit h the machine itself: the flop was solely due
to the refusal of software houses to write and publish QL
programs. Now for paradox number 2. The so-called NATGUG
experts have always asserted that the strength of the TRS-80
(Models I, III, or IV) was in the phenomenal amount of_. software
available for it - so why have Tandy U~ deserted us and turned
instead to selling the Amstrad, which, for all its good points,
doesn't run Tandy software ?

Many members were surprised by the intent
court the Amstrad user, whilst many others were
that we didn't pursue the PC and MS-DOS people.
what I Mr . Sugar, of Amstrad, has hinted that he
selling an IBM clone - for around £500 I Guess
will be heading then!

by NATGUG to
disappointed
Well, guess

c_ould soon be
where NATGUG

Back to our support for Tandy software houses. I had a
phone call recently from the new and highly delighted owner of
Zedcor ZBASIC. He assures me that this has completely
transformed his Model 4 - and that the publishers have told him
that he is the ONLY owner in the u~. Well now, how about that
as a bad example of our support ? Those of you who missed
Vernon Blackmore's letter in last month's magazine should
perhaps read page 8 again

At the time of writing, Os is still making plans for
BLANDFORD '86, but it looks as though the date will be two weeks
after the August Bank Holiday, so pencil S•f'r 7YH • .• in your
diary now, and watch this space for further announcements ! You
did write down the SWINDON date, didn't you ? 17th 19th
OCTOBER - and it's time to be letting us know what YOU want on
the programme.

David Washford, 6 Houston Way, FROME, Somerset BAll 3EU. (0373)
727 39

(With respect to Dave's note on NATGUG's amorous intentions, we
DO intend to court MSDOS users but the AGM felt that we needed
more funds for advertising etc than were at present available
and that a successful recruitment of PCW 8256/8512 users might
fund this. Al so the group's expertise with MS DOS is nowhere
near as extensive as with CPM and therefore we had little to
offer in terms of a knowledge base for either hardware or

- 9 -

s o ftwa r e. Six mo 11ths or so would enable t hose of us with
MSDOS/PCDOS machines to become expert the definition of an
expert being someone who is one chapter ahead of you - Ed.)

CUMANA DISK DRIVES - David Roberts

Last November I wrote to the Newsletter commenting that by
greasing the guide rails of my Cumana Shugart twin DS drives,
the noise level had been reduced. I also stated that it seemed
to cure the NOT READY ON DRIVE A: message. How wrong I was on
the latter. Soon afterwards the trouble reappeared and was so
persistant that I lost confidence in their use and was beginning
to use the infernal Model 4 40 track drives. As some of you
might know, we are fortunate here in Northern Ireland to have
Don Bannister and Trevor Hutchinson as the local 'Gurus'. Even
these two esteemed gentlemen were foxed by the problem.

I finally wrote to the Engineering manager of Cumana, Mr c.
Magee, who wrote back suggesting that I should first check that
the terminating resistor pack was in place on the last drive and
failing that, check the two 40/80 track switches for correct
position. Apparently the middle position is a reset position.
These were checked out with no avail.

One evening Trevor had a final look at the drives and with
surprise i n his voice said something to the effect: 'Cor ••• who
ever saw power regulators of a power supply plugged into
sockets???'. He had struck gold. A follow-up phone call to
Cumana confirmed that this was an old practice (my drives are
only one year old) and that they had discontinued this due to
flexing ot the board causing intermittent faults. He also
promised to send a metal shield to fit over the power supply as
in later models. This I recieved two days later.

Congratulations Cumana for super service. So the final
answer was to remove the socket and solder regulators to the
board directly. 100\ operation and confidence thanks to Trevor,
Don and Cumana.

So, if anyone in the Group has Cumana Drives, remove the
cover, look under the perforated power supply cover and if you
find the same setup, you know what to do •.•• otherwise you are
living on borrowed time and someday when you are in the middle
of a long article to NATGUG NEWS (come on .•• let's hear your
problems and solutions), you will be looking in disbelief at the
NOT READY ON DRIVE A: message.

David Roberts. Bangor, Co . Down

- 10 -

A TASTE OF PASCAL - Steve Ridall

Pascal, in the same way as BASIC, was designed as a teaching
aid. It was not however, designed with another language in mind
but rather as a method of encouraging structured programming.
Contrary to popular opinion, PASCAL is not a difficult language
to learn, in fact I would argue that learning PASCAL is easier
than learning BASIC. Some features of the language, ie.
pointers can be a little daunt~ng, but very effective use of the
language can be made without some of the more exotic features
(pointers are in fact similar to the VARPTR command in BASIC.

Subroutines (known as procedures) are very straitforward
and can be nested within other procedures. Variables can be of
any length, depending on the compiler (usually 99 characters may
be specified but only the first 8 or so are significant). One
aspect that does take a little getting use to is that
'assignment' and 'equality' are treated differently. The '=' is
used give the value to constants ie. pi= 3.1416 •• or in tests
for equality IF a b THEN ••••• Assignment of values to
variables is differentiated by use of a preceding colon ie.
VALUE := 20 COST := VALUE * VAT. Remarks are enclosed in
curly brackets or'(* ••• *)'. The terminator of an expression is
';' (in BASIC a similar symbol is ':'). Perhaps the best way to
give the flavour of PASCAL is to show a small program.

Two different types of loops are demonstrated in the program
below, the REPEAT and DO WHILE. You may notice that portions of
the program are indented. You will find this with most PASCAL
programs as it makes them easier to read and the structure
somewhat clearer. This is not a requirement of PASCAL as long
as a terminator(;) is used to separate statements then there is
no reaso why they could not be written in one continual stream.

PROGRAM EXAMPLE (INPUT OUTPUT)
VAR cash,income,expenditure,total:INTEGER;
finished:BOOLEAN; (*finished can only be TRUE or FALSE*)
BEGIN

finished:=FALSE;
expenditure:=O:
income:=O: (*variables do NOT start out with

zero values by default*)
WHILE NOT finished DO (*the loop BEGIN ••. END will be

executed until finished is set to
TRUE*)

BEGIN
WRITELN('Cash Flow Program');
WRITELN; (*Print a blank line*)
WRITELN('Enter Income or 0 to finish');
READ (cash); (*input cash value*)
IF cash = 0 THEN finished := TRUE;
income := income + cash;

END;

finished := FALSE;

REPEAT
BEGIN

- 11 -

WRITELN('Enter expenses or 0 to finish') :
READ(cash):
IF cash = 0 THEN finsihed := TRUE:
expenditure := expenditure + cash:

END:
UNTIL finished := TRUE;
NRITELN('Total income is ',income);
WRITELN:
WRITELN('Total expenses •,expenditure);
total := income - expenditure;
WRITE('Total =',total);

END. (*All PASCAL programes must end with a full stop*)

One or two points that may need clarifying are •••••

Line 1 In most high level languages, including PASCAL you must
name the program in the first line, this one is called EXAMPLE.
The hardware devices used and any files nust be stipulated in
the first line of the program. In this case keyboard (input)
and VDU (output) are declared.

Line 2 All variables must be declared at the beginning of the
program. This can be beneficial since a glance at the top of
the program makes it very much less likely that you will choose
the same variable twice. Variable must be declared as
integer/real/boolean/character or you may specify your own.
Arrays can be any of these types.

Line 4 Every block of code begins with a BEGIN and ends with an
END, makes sense ?

Line 5 As BASIC except that you must use':=' instead of '=' to
reassign a value to the variable.

One of the most useful features of PASCAL is the records which
are part of the specification of the language. Any field may of
course be accessed within the record and in fact records may be
enclosed within one such field. You could consider a date as an
example of a record . A date has three coaponents: the day of
the month, the month and the year. Sometimes we are interested
in the date as a whole ie what is your date of birth. Other
times we are interested in particular components of the date, ie
in what year will Halley's comet appear (NO FT, no comet? Ed.).

Thus the date can be considered as a record with 3 fields.
Records must be declared at the beginning of the program with
the TYPE statement.

TYPE dates RECORD
day :1..31;
month: 1. .12;
year :O . • 9999;
ENO

Th is coul d then be used to de c lar e variat-~ e s '-'"''.'se ... ~~ · 1es ~re

- 12 -

dates
eg. today,lastcomet,nextcomet : dates

a field designator would then be

nextcomet.year

and the statement

nextc0111et.year := lastcomet.year + 82:

would update the year field in the record variable nextcomet.

A list of some BASIC vs PASCAL statements is given below.

==========================:===:========:====·=================
BASIC

Print"Hello•

PRINT(a + b)
INPUT(x)

LINEINPUT a$

x\/yt

IP' •• THEN •• ELSE
AND/OR/N<Yr
+,-,*,/

'P'OR' loops
FOR x=l to 10
co c co + x

NEXT X

PASCAL

WRITELN('Hello):

WRITE(a + b):
READ{ x):

READLN(a) :'

x DIV y

IF •• THEN •. l!:LSE
AND/OR/NOT
+,-,*,/

FOR x:=l to 10
BEGIN

co := co + x:
END

COMMENTS

The LN at the end gives a
carriage return

x defined as
integer/real/own-numeric
A declared as an array of
characters
DIV .used for integer
division

Except for DIV above

If more than one statement
is used then they must be
enclosed in BEGIN ••• END

PASCAL is a very nice language and I have only covered a few of
its merits. One of its limitations is in string handling
capabilities although the UCSD P system includes strings
(Borland'• Turbo PASCAL has quite reasonable extensions for
strings Ed.). A good introduction to PASCAL is 'PASCAL an
introduction to methodical progra1111ing' by w. Findlay & D. Watt,
published by Pitman, ISBN 0-273-02188-5.

Steve Ridall. - Hornsey, London

- 13 -

Execute from a Menu in Turbo PASCAL - Dave Roberts

Now that the dark winter days are receding (look outside at the
snow, rain and wind!!) and spring is in the air, a married man's
thoughts turn to .•••• well •••• what can he usefully program in
Pascal.

Wouldn't it be nice to have a little program which would run on
booting up and would display a menu of the main programs on the
disc and which could be run by pressing only one key . Now I'm
not saying that I'm too lazy to type the program name but I'm
thinking rather of my spouse who from time to time wants to use
Wordstar. Come to think of it, some of my colleagues at work
might appreciate the same facility on the Sirius.

Now writing normal self-contained Pascal programs using data
files isn't too difficult, but where do I begin when I want to
call external programs from within the Pascal . program? Most of
the books on the subject of Pascal don't have much if anything
to say on the problem . After several nights thumbing through
various books and manuals I stumbled across the pre-declared
procedure EXECUTE. The following is the first 'play - program'
which I used to test whether I can call programs such as
Wordstar, Supercalc, dBase or whatever.

PROGRAM MENU:
VAR

FILENAME: FILE:
BEGIN

CLRSCR:
GOTOXY(28, 7):
WRITELN('M E N u I) :

ASSIGN(FILENAME, 'WS.COM'):
EXECUTE(FILENAME)

END.

PROGRAM MENU:
VAR

FILENAME: FILE:
BEGIN

CLRSCR:
GOTOXY(28, 7):
WRITELN('M EN U '):
ASSIGN(FILENAME, 'DBASE.COM'):

EXECUTE(FILENAME)
END.

PROGRAM MENU:
VAR
FILENAME: FILE:
BEGIN

CLRSCR:
GOTOXY(28, 7):
WRITELN('M EN U '):
ASSIGN(FILENAME, ' SC2.COH'):
EXECUTE(FILENAME)

END.

PROGRAM MENU:
VAR
FILENAME: FILE:
BEGIN

CLRSCR:
GOTOXY(28, 7):
WRITELN('M EN U '):
ASSIGN(FILENAHE, 'SUBMIT.COM

WS.SUB'):
EXECUTE(FILENAME)

END.

Of these four little examples only those which call SC2.com and
DBASE.COH work. (I find that I have to put .COM after the
filenaJ11e). The problem with the one which calls WS.COH is that
it will certainly call Wordstar but Wordstar continues on into
the document mode and opens a file called WS.COH. Now this is a
dangerous thing!!. Saving this file would overwrite Wordstar
itself, hence a quick exit without saving. Why does this

- 14 -

happen? Anyone out there with any ideas how to overcome it?

A little known fact about Wordstar is that one
into the document fro• the CP/M command line
\filename\. I• this a clue to what is happening?

can
by

go straight
typing :WS

The fourth little example doesn't work either. All I get is the
message 'Command Buffer Overflow' then it bombs out. Logically,
it should work because SUBMIT.COM WS.SOB is used in the normal
command line. I normally use a submit file to set up Wordstar.
This includes re-defining the keyboard and PIPing the overlays
to drive M:.

I would
problem.

be grateful if any one can help me sort out this
They can then have a copy of the completed program.

For those interested, here is my submit file and Key definition
file.

(NB. The daisy wheel I'• using does not have a caret, control is
therefore represented by an upright bar.

ws.sus

file*)
KEYDEF WSKEY.KDF

PIP M:mA:WS*.OVR
Ma
ArWS
ERA M:WS*.*
A:
KEYDEF DEFAULT.KDP

(*this copies the key

(*copy overlays to MEMdisk*)
(*log onto drive M: MEMdisk*)
(*call wordstar*)
(*clears MEMdisk at finish*)
(*log onto drive A:*)
(*reset keyboard on exit*)

WSKEY.KDF

CL- G
BK• C
UP• E
DN= X
~-s
RT= D
IUP=I[

Fl=1KD
F2• B
FJm OG

(*clear key • delete *)
(*break • Ctrl C*)
(*up arrow• Ctrl E*)
(*down arrow• Ctrl X*)
(*left arrow• Ctrl S*)
(*right arrow = Ctrl D*)
(*shift up• escape•)
(*Fune 1 • Save ~ Done*)
(*Fune 2 • reformat paragraph*)
(*temporary para indent*)

definition

DEFAULT.KDF

CL= x
BK= C
ON= X
LF"' H
RT= I
IUP=I [
I RT=I
lLF=IX
Fl=HDIR A· 1H
F2=HDIR B; H
F3=HDIR C: M

- 15 -

By copying the Wordstar overlay files to memdisk and logging
onto drive M: you will find that wordstar runs auch faster.

David Roberts. 6 Plantation Rd. Bangor, co. Down.
Tel. 0247-462564 Prestel Mail Box 247462564

(The answer to your problem may lie in the way in which CP/H
normally deals with command line tags. Having processed the
main .COM filename the CCP looks to see if there are any other
tags or names on the command line. If there are any, it
constructs up to two more FCB's in the systea parameter area
starting at 005CH. The main program can look here to see if you
specified anyfile and do something about it - like load it. Now
Turbo Pascal may be doing its own processing of coamand lines
and not proceesing tags in the same way as the CCP. I'd advise
a good hack with ZBE to see what was going on - Ed.)

- 16 -

PU'l'TING 5.25 lNld!ES Ofll AmlOLD.

This small nugget of information is aimed at the 1 or 2 Ametrad
users that might belong to the group. The information as it
stands applies directly to the CPC464 and comes from an article
in COMPt.1l'ING August 15 & 22, 1985. It may also also apply to
the PCW 8256 but that is not guaranteed. · The Allllltrad's come
with nice little 3 inch thingies, that certainly are not floppy
but are a trifle expensive and can be difficult to obtain -
disks I'm talking about. Aleo, there is rather 110re software on
the 5.25 fonaat. 5.25 inch drives are pretty cheap these days
and it would be quite nice to just bolt one on and get the best
of both worlds. Apparently it is quite a simple job since all
the signals are present to confora to the Shugart SA400
Standard. The problea is that the interface does not present
them in the required order. On the Shugart interface all the
odd numbered pins are signal grounds and the even numbered pins
carry the interface signals. The Amstrad reverses this sequence
with odd numbered pins carrying the signals and evens the
grounds. The Table gives the pin correspondence and function .

SA400
pins

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

!"unction

Not used
Bead load
Drive 3 Select
Index Pulse
Drive 0 Select
Drive l Select
Drive 2 Select
Motor On
Step direction
Step Pulse
Write Data
Write Gate
Track 0 sense
Write protect
Read Data
Side 1 Select
Ready

Ametrad interface
pins

1
3
5
7
9
11
13 -
15
17
19
21
23
25
27
29
31
33

In the case of the CPC464 the blue stripe on the cable coming
from the interface identifies pin 34 NOT pin 1 as is usual.
A suitable cable can be aade frOll a 34 way IDC connector to mate
with the disk drive and 34 plug header which would normally be
intended for soldering to PCB'•· The latter mates with the
connector already on the cable. These connectors may vary with
the CPC 664 & PCW 8256.

Anon.II.

- 17 -

KERMIT - A file transfer protocol. - Geof Smith

This discussion of Kermit is based in part on the two articles
published in Byte June/ July 1984 and partly f r om my own
experiences in setting up and using Kermit on a number of
different computer systems.

What is Kermit ?

One thing that it is NOT i 's a l,ittle green frog although the
documentation does ciaim that it is named after the Muppets Mega
Star. The documentation also claims that it is the Celtic · for
'free' which seems to make more sense since it is in the public
domain. It is also NOT a high powered modem - communications
program. There are many of these available both comme~cially
and in the public domain, some of which employ the Kermit
protocol and I hope to get some reviews on these from other
members.

As the title says Kermit is a file transfer protoc~l - ie.
a set of rules that enable a file to be transferred via a
communication link from one computing environment to anothe·r
with 100\ fidelity. How the set of rules are implememted i~
irrelevant, as long as the rules are obeyed the file will get
through unchanged. In the case of Kermit the protocol has been
implemented in virtually every language and on machines ranging
from a Beeb to a Cray (see end of article for complete list).
There are other protocols in use, the most common being the
X-MODEM protocol put forward by Ward Christense.n. However
MODEM-7 and successors were initially developed for
communications between m·icros and ~ so i'ts use an.d universality of
implementation are d~fferent to that of Kermit's. What I hope
to do in this and the next couple of issues is to discuss the
development of and thinking behind the Kermit protocol and
detail the features and use of Kermit on the Model 4 & MSDOS
systems.

Spawning of Kermit.

Kermit was developed initially at Columbia University in
response to what is quite a common situation. The campus had a
number of large main-frames in a central computing facility with
many smaller systems scattered around laboratories and
departments. With the explosive increase in the number of
micros there was much demand for ways in which to exchange files
between the central and peripheral computers. Additionally,
with increased student interest in computing, usage of the
mainframe on-line-storage was growing at an uncontrollable rate
and the need to economically archive files was an urgent
consideration. Given a reliable way to transfer files between
mainframe and back, micros with floppy disks could prove an
inexpensive way of achieving this. What was needed was a file
transfer system that could work across the complete range of
computers. The commercially available packages would only serve
a strictly limited number of machines, and would be financially

crippling
supported.

18 -

given the number of machines that needed
The solution was to develop their own system.

The Communication medium.

to be

The only communication medium common to all computers,
large and small, is the asynchronous serial telecommunication
line, used for connecting terminal• to computers. Certain
aspects of this medium are almost universally followed -
voltages, signals, character encoding (ASCII, ANSI) and bit
transmission sequence. Serial connections can be made in many
ways: dedicated local lines (ie. null modem cables), leased

telephone circuits, dialup connections. Dialup connections can
be initiated manually from the home or office using an
inexpensive modem, or automatically from one computer to another
using a programmable dialing mechanism. The asynchronous serial
line offers the ordinary user a high degree of convenience and
control in establishing intersystem connections, at relatively
low coet.

Once two computers are connected with a serial line,
information can be transferred from one machine to the other,
provided one side can be instructed to send the information and
the other to receive it. But right away, several important
factors come into play:

Potential Problems.

1. Noise It is rarely safe to assume that there will
be no electrical interference on a line; any long or switched
data communication line will have occasional interference, or
noise, which typically results in garbled or extra characters.
Noise corrupts data, perhaps in subtle ways that might not be
noticed until it's too late.

2. Synchronization Data muet not come in faster than
the receiving machine can handle it. Although line speeds at
the two ends of the connection may match, the receiving machine
might not be able to process a steady stream of input at that
speed. Its central processor may be too slow or too heavily
loaded, or its buffers too full or too small. The typical
symptom of a synchronization problem is lost data; most
operating systems will simply discard incoming data they are not
prepared to receive.

3. Line Faults -- A line may stop working for short
periods because of a faulty connector, loss of power, or
similar reason. On dialup or switched connections, such
intermittent failures will cause the carrier to drop and the
connection to be closed, but for any connection in which the
carria l'.' si <Jll a l is not used, the symptom will be lost data. The
serial telecommunication line provides no safeguards against
such problems, and therefore muet be regarded as an
intrinsically unreliable medium.

- 19 -

,,;t• lling He .l iable Communication over an Unreliable Medium

To determine whether data has been transmitted between two
machines correctly and completely, the two machines can compare
the data before and after transmission. A scheme that is
commonly used for file transfer employs cooperating programs
running simultaneously on each machine, communicating in a
well-defined, concise language. The sending program divides
outbound data into discrete pieces, adding to each piece special
information describing the data for the receiving program.
The result is called a "packet". The receiver separates the
description from the data and determines whether they still
match. If so, the packet is acknowledged and the transfer
proceeds. If not, the packet is "negatively acknowledged" and
the sender retransmits it; this procedure repeats for each
packet until it is received correctly.

The process is called a communication protocol -- a set of
rule's for forming and transmitting packets, carried out by
programs that embody those rules. Protocols vary in complexit~;
the programmers at Columbia chose a simple approach that could
be redlized in almost any · language on .almost any computer by a
programmer of moderate skill, allowing the protocol to be
adapted easily to new systems.

Accommodating Diverse Systems

Most systems agree how to communicate at the lowest levels
- the EIA RS-232-C asynchronous communication line and the ASCII
character set - but there is rarely agreement beyond that. To
avoid a design that might lock out some kinds of systems, the
impor~ant ways in which systems can differ must be considered.

Design Considerations

1. Mainframes vs Micros

The distinction made in the context of this project was
that a micro is · any single-user system in which the serial
communication port is strictly an EXTERNAL device. A mainframe
is any system which is "host" to multiple simultaneous terminal
users, who login to "jobs", and the serial line is INTERNAL,
ie. is the link between CPU and VDU/Console. In the latter case
where the serial line is internal the appearance of certain
characters on the line such as CTL/C may signify special events
to the command processor or all input may be translated to upper
case etc. The moral here is that care must be taken to disable
special handling of a mainframe job's controlling terminal when
it is to be a vehicle for interprocessor communication. But
some systems sh1ply do not allow' certain of these features to
be disabled, so file transfer protocols have to be designed
around them.

- 20 -

2 Line Access

Line access can be either full or half duplex. If full
duplex, transmission can occur in both directions at once. If
half duplex, the two sides must take turna sending, each
signaling the other when the line is free: data sent out of turn
is discarded, or it can cause a break in synchronization. On
mainframes, the host echoes characters typed at the terminal in
full duplex, but not in half duplex. Naturally, echoing is
undesirable during file transfer. Full duplex systems can
usually accommodate half duplex communication, but not vice
versa.

3. Buffering and Flow Control

Some systems cannot handle sustained bursts of input on
a telecommunications line; the input buffer can fill up faster
than it can be emptied, especially at high line speeds. SOae
systems attempt to buffer "typeahead" (unrequested input), while
others discard it. Those · that buffer typeahead may or may not
provide a mechanism to test or clear the buffer. Systems may
also try to regulate how fast characters come in using a flow
control mechanism, either in the data stream (XON/XOFF) or in
parallel to it (modem control signals), but no two systems can
be assumed to honour the same conventions for flow control, or
to do it at all. Even when flow control is being done, the
control signals the.selves are subject to noise corruption.

4. Character Interpretation

Systems can differ in how they interpret characters that
arrive at the terminal port. A host can accept some characters
as sent, ignore others, translate others, take special action on
others. Communications front ends or multiplexers might swallow
certain characters (typically DC!, DC3) for flow control,
padding (NUL or DEL), or for transfer of control ("escape").
The characters that typically trigger special behavior are the
ASCII control characters, 0-31 and 127. However, virtually all
hosts and communication processors allow any "printable"
character (ASCII 32-126) to reach an application program, even
though the character maybe translated to a different encoding
for internal use.

Some operating systems allow an application to input a
character at a time, others delay passing the characters to the
program until a "logical record" has been detected, usually a
sequence of characters terminated by carriage return or
linefeed. Some record oriented systems like IBM VM/370 discard
the terminator, others keep it, and there are different ways of
keeping it -- UNIX translates carriage return into linefeed;
most DEC operating systems keep the carriage return but also add
a linefeed

- 21 -

s. Timing out

Hosts 11ay or may not have the ability to "time out" ·. When
exchanging messages with another computer, it is desirable to be
able to issue an input request without waiting forever should
the incoming data be lost. A lost message could result in a
protocol "deadlock• in which one system is waiting forever for
the message while the other waits for a response. Some systeas
can set timer interrupts to allow escape from potentially
blocking operations: others, including many microcomputers, can
not do so . When timeouts are not possible, they may be
simulated by sleep-and-test or loop-and-test operations, or
deadlocked systems may be awakened by manual intervention.

6. File Organization

Some computers store all files in a uniform way, such as the
linear stream of bytes that is a UNIX file. Other computers may
have more complicated or diverse file organizations and access
methods: record-oriented storage with its aany variations,
exemplified in IBM OS/360 or DEC RMS. Even simple
microcomputers can present complications when files are treated
as uniform data to be transferred: for instance under CP/M, the
ends of binary and text files are determined differently. A
major question in any operating system is whether a file is
specified sufficiently by its contents and its ·name, or if
additional external information is required to make the file
valid . A simple generalized file transfer facility can be
expected to transmit a file's name and contents, but not every
conceivable attribute a file might possess.

Designers of expensive networks have gone to great lengths to
pass file attributes along when transferring files between
unlike syste~s. For instance, the DECnet Data Access Protocol
supports 42 different "generic system capabilities" (like
whether files can be preallocated, appended to, accessed
randomly, etc), 8 data types (ASCII, EBCDIC, executable, etc), 4
organizations (sequential, relative, indexed, hashed), 5 record
formats (fixed, variable, etc), 8 record attributes (for format
control), 14 file allocation attributes (byte size, record size,
blocksize, etc), 28 access options (supersede, update, append,
rewind, etc), 26 device characteristics (terminal, directory
structured, shared, spooled, etc), various access options (new,
old, rename, oassword, etc),in addition to the better known file
attributes like name, creation date, protection code, and so on.
All this was deemed necessary even when the designers had only

a small number of machines to worry about, all from a single
vendor 11.

7. Binary Files versus Parity

Each ASCII character is represented by a string of 7 bits.
Printable ASCII files can be transmitted in a straightforward

fashion, because ASCII transmission is designed for them: a
serial stream of 8-bit characters, 7 bits for data and 1 for

- 22 -

parity. framed by •tart and stop bits for the benefit of the
hardware. 'l'he parity bit is added aa a check on the integrity
of a character: some ayste•• always transmit parity. others
insist on parity for incoaing characte.ra, still others ignore
the parity bit for coamunication purposes and pass it along to
the software. while still others discard it altogether. In
addition. c0111munication front enda or common carriers aight
usurp the parity bit. regardless of what the system itself aay
do.

Computer file systems generally store an ASCII file as a
sequence of either 7-bit or 8-bit bytes. 8-bit bytes are more
common. in which the 8th bit of each byte is superfluous. As
well as files composed of ASCII characters, computers also have
"binary" files. in which every bit is meaningful: examples
include executable "core images" of programs, numbers stored in
"internal format", databases with imbedded pc.inters. Such
binary data must be mapped to ASCII characters for transmission
over aerial lines.

a. Software

Finally. systems differ in the application software they
have. In particular. no system can be assumed to have a
particular programming language. Even widespread languages like
FORTRAN and BASIC may be lacking from some computers, either
because they have not been implemented, or because they are
proprietary and have not been purchased. Even when two
different systems support the same language. it is unrealistic
to expect the two implementation• of the language to be totally
c0111patible. A general purpose file transfer protocol should not
be geared towards the features any particular language.

'l'he above discussion should have given you some insight into the
problems that face us in the world of computer communications
and perhaps you now understand why we can't always just plug
them together for a happy and fruitful union!. Next month I
will review the protocol itself but in case any of you want to
try out KERMIT, on receipt of a disk and return postage I can
let you have a number of implementations that will work on Model
1/3 (tested under NEWDOS/TRSDOS) Model 4 (CPM) and PC-Clones
(PCDOS).

Geof Smith.

- 23 -

Space saving in filing routines revisited .- M.C. ·Matthews

I read with interest Mr. Baust's . comment on my filing routines,
and would first say that he obviously missed my second
instalment which appeared in the same newsletter. This covers
his point about the concatenation of fixed length items .

His main point seems to be that he cannot see where the
space saving comes in. Most of my filing is in the form of
arrays of one sort or another, and to take a simple example, I
have an array which holds information in the form of integers.
Each integer has four pieces of information packed into it, and
there are 300 of them.

Filing these is staightforward. We can file them in blocks
of 127 in each sector, using A as the variable and A$ as the
field string. If we do this we have the dimension A$(127),
which takes 393 bytes, and we are left with these strings in the
string space. If we file in the method I suggest, that is

FIELD 1, 2SS as GF$
FOR I=l TO 127

LSET GF$sLEFT$(GF$,(I-1)*2)+MKI$(A)
NEXT I

we only occupy 2S bytes of string space. This is determined by
practical experiment using a simple program as follows:-

Program Result Difference
10 OPEN" RN, 1, "TEST": 0"
20 PRINT FRE(Z$) 27918
30 FIELD l,2SS AS A$:PRINT FRE(Z$) 27911 7
40 FIELD 1,100 AS 8$,100 AS C$,5S AS

D$:PRINT FRE(Z$) 27890 21
so FIELD l,2SS AS GF$:PRINT FRE(Z$) 27883 7
60 DIM A(l27):PRINT FRE(Z$) 27362 S21
70 FOR I•l TO 127:LSET GF$•

LEFT$(GF$,(I-1)*2)+MKI$(A(I))
NEXT:PRINT FRE(Z$) 27346 18

If we change lines SO to 70 we get the following result:-

Program Result Difference
At line 30 27869
50 X=O:DIM A$(127):FOR I•lTO 127:

FIELD l,(X)AS T$,2AS A$(I):X•X+2:NEXT
:PRINT FRE(Z$) 274S3 416

60 DIM A(l27):PRINT FRE(Z$) 26932 521
70 FOR I•lTO 127:LSET A$(I)•MKI$(A(I))

:NEXT:PRINT FRE(O) 26932 0

Since the second method is 42 bytes LONGER than the first we can
see that the free memory is in fact 414 bytes greater just on
this one routine. Looking at the early part of the program,
line 40 shows that each subdivision of the field takes an extra
7 bytes of memory. The real saving is in the fact that it is no

longer necessary to
removing these fr<>11
d .. ands by nearly 6kb.

- 24 -

dimension
one of my

field strings for
programs reduced

arrays, and
ita memory

I have in fact abandoned the use of GF$••• at the end of
each routine, but since fielding is usually just a matter of
putting FIELD 1,255 AS GF$, ALL my random filing routines
re-field when called. Thia has the further advantage of
reducing errors resulting froa calling a routine with an
incorrect field.

M.C. Matthews, Dorset.

While on the subject of FIELDing things,
quick and dirty BASIC program to split a
text file into more manageable pieces.

10 CLEAR 1000 I OPES ·R·,1,·FILB/TXT:l•
15 FIELD 1,255 AS A$ 1 FIELD 2,255 AS 8$
20 I•O 1 RI • 0 1 RO • 0
30 TAG$ • CHR$(65+I)
40 HM$ • •FILB•+TAG$+•/'l'XT:l•
45 OPEN "R•,2,NH$
50 RI • RI + 1 a RO • RO + 1
60 GET l,RI 1 LSET BaA 1 PtJT 2,RO
70 IF RI a 360 THEN CLOSE a END
80 CLOSE 2 I RO • 0 I Garo 30

I recently wrote a
large (360 sectors)

Quite crude but should work I thought, although line 15 bothered
••· However, the aanual does say (p 7-47) that the buffer is 255
bytes and of course Basic will not let you have a string of
greater length. It does appear to work, but you only get the
first 255 characters of your file when you load it into
Scripsit. The answer is of course that the buffer is NOT 255
but 256 bytes (since 0 counts as 1 - logical (1) isn't it?) and
the 256th byte gets zapped to zero. Linea 15 AND 60 have to be

15 FIELD 1,128 AS A$,128 AS AA$: FIELD 2,128 AS 8$,128 AS BB$
60 GET l,RI : LSET B$•A$: LSET BBaAA : PUT 2,RO

Moat habitual BASIC users will probably have discovered this
eons ago but it may save one or two casual users the odd hour of
hair pulling - Ed.

